Abstract
Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (CDGKS-like) equation. Based on bilinear neural network method, the generalized lump solution, classical lump solution and the novel analytical solution are constructed by giving some specific activation functions in the single hidden layer neural network model and the “3-2-2” neural network model. By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. These results fill the blank of the CDGKS-like equation in the existing literature. Via various three-dimensional plots, curve plots, density plots and contour plots, dynamical characteristics of these waves are exhibited. The effective methods used in this paper is helpful to study the nonlinear evolution equations in plasmas, mathematical physics, electromagnetism and fluid dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.