Abstract

In this paper we present a novel strategy to discover the community structure of (possibly, large) networks. This approach is based on the well-know concept of network modularity optimization. To do so, our algorithm exploits a novel measure of edge centrality, based on the k-paths. This technique allows to efficiently compute a edge ranking in large networks in near linear time. Once the centrality ranking is calculated, the algorithm computes the pairwise proximity between nodes of the network. Finally, it discovers the community structure adopting a strategy inspired by the well-known state-of-the-art Louvain method (henceforth, LM), efficiently maximizing the network modularity. The experiments we carried out show that our algorithm outperforms other techniques and slightly improves results of the original LM, providing reliable results. Another advantage is that its adoption is naturally extended even to unweighted networks, differently with respect to the LM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.