Abstract

The min-entropy is a widely used metric to quantify the randomness of generated random numbers, which measures the difficulty of guessing the most likely output. It is difficult to accurately estimate the min-entropy of a non-independent and identically distributed (non-IID) source. Hence, NIST Special Publication (SP) 800-90B adopts ten different min-entropy estimators and then conservatively selects the minimum value among ten min-entropy estimates. Among these estimators, the longest repeated substring (LRS) estimator estimates the collision entropy instead of the min-entropy by counting the number of repeated substrings. Since the collision entropy is an upper bound on the min-entropy, the LRS estimator inherently provides overestimated outputs. In this paper, we propose two techniques to estimate the min-entropy of a non-IID source accurately. The first technique resolves the overestimation problem by translating the collision entropy into the min-entropy. Next, we generalize the LRS estimator by adopting the general Rényi entropy instead of the collision entropy (i.e., Rényi entropy of order two). We show that adopting a higher order can reduce the variance of min-entropy estimates. By integrating these techniques, we propose a generalized LRS estimator that effectively resolves the overestimation problem and provides stable min-entropy estimates. Theoretical analysis and empirical results support that the proposed generalized LRS estimator improves the estimation accuracy significantly, which makes it an appealing alternative to the current-standard LRS estimator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.