Abstract

Epidemiological studies often encounter a challenge due to exposure measurement error when estimating an exposure-disease association. A surrogate variable may be available for the true unobserved exposure variable. However, zero-inflated data are encountered frequently in the surrogate variables. For example, many nutrient or physical activity measures may have a zero value (or a low detectable value) among a group of individuals. In this paper, we investigate regression analysis when the observed surrogates may have zero values among some individuals of the whole study cohort. A naive regression calibration without taking into account a probability mass of the surrogate variable at 0 (or a low detectable value) will be biased. We developed a regression calibration estimator which typically can have smaller biases than the naive regression calibration estimator. We propose an expected estimating equation estimator which is consistent under the zero-inflated surrogate regression model. Extensive simulations show that the proposed estimator performs well in terms of bias correction. These methods are applied to a physical activity intervention study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call