Abstract
Abstract Chapter 7 introduces one of the most useful statistical frameworks for the modern life scientist: the generalized linear model (GLM). GLMs extend the linear model to an array of non-normally distributed data such as Poisson, negative binomial, binomial, and Gamma distributed data. These models dramatically improve the breadth of data that can be properly analysed without resorting to non-parametric statistics. Using the same RxP dataset, readers learn how to assess the error distribution of their data and evaluate competing models to achieve the best, most robust analysis possible. Diagnostic plots and assessing model fit is continually taught as is how to interpret the model output and calculate summary statistics. Plotting non-normal error distributions with ggplot2 is taught, as is using the predict() function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.