Abstract
AbstractEmerge in technology brought well‐organized manufacturing systems to produce high‐quality items. Therefore, monitoring and control of products have become a challenging task for quality inspectors. From these highly efficient processes, produced items are mostly zero‐defect and modeled based on zero‐inflated distributions. The zero‐inflated Poisson (ZIP) and zero‐inflated Negative Binomial (ZINB) distributions are the most common distributions, used to model the high‐yield and rare health‐related processes. Therefore, data‐based control charts under ZIP and ZINB distributions (i.e., Y‐ZIP and Y‐ZINB) are proposed for the monitoring of high‐quality processes. Usually, with the defect counts, few covariates are also measured in the process, and the generalized linear model based on the ZIP and ZINB distributions are used to estimate their parameters. In this study, we have designed monitoring structures (i.e., PR‐ZIP and PR‐ZINB) based on the ZIP and ZINB regression models which will provide the monitoring of defect counts by accounting the single covariate. Further, proposed model‐based charts are compared with the existing data‐based charts. The simulation study is designed to access the performance of monitoring methods in terms of run length properties and a case study on the number of flight delays between Atlanta and Orlando during 2012–2014 is also provided to highlight the importance of the stated research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.