Abstract
ABSTRACT Latent variable modeling is commonly used in behavioral, social, and medical science research. The models used in such analysis relate all observed variables to latent common factors. In many applications, the observations are highly non normal or discrete, e.g., polytomous responses or counts. The existing approaches for non normal observations can be considered lacking in several aspects, especially for multi-group samples situations. We propose a generalized linear model approach for multi-sample latent variable analysis that can handle a broad class of non normal and discrete observations, and that furnishes meaningful interpretation and inference in multi-group studies through maximum likelihood analysis. A Monte Carlo EM algorithm is proposed for parameter estimation. The convergence assessment and standard error estimation is addressed. Simulation studies are reported to show the usefulness of the our approach. An example from a substance abuse prevention study is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.