Abstract

Abstract Two new methods of constructing robust linear and quadratic discriminant functions are introduced. The first is a generalization of Fisher's procedure for finding a linear discriminant function. It places less weight on those observations that are far from the overlapping regions of the two populations. The second new method substitutes M-estimates of the means and the covariance matrices into the usual expressions for the linear and quadratic discriminant functions. Monte Carlo results indicate lower misclassification probabilities for these schemes compared to Fisher's linear discriminant function in cases of heavy-tailed or contaminated distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.