Abstract
This article proposes a practical modeling approach that can accommodate a rich variety of predictors, united in a generalized linear model (GLM) setting. In addition to the usual ANOVA-type or covariatelinear (L) predictors, we consider modeling any combination of smooth additive (G) components, varying coefficient (V) components, and (discrete representations of) signal (S) components. We assume that G is, and the coefficients of V and S are, inherently smooth—projecting each of these onto B-spline bases using a modest number of equally spaced knots. Enough knots are used to ensure more flexibility than needed; further smoothness is achieved through a difference penalty on adjacent B-spline coefficients (P-splines). This linear re-expression allows all of the parameters associated with these components to be estimated simultaneously in one large GLM through penalized likelihood. Thus, we have the advantage of avoiding both the backfitting algorithm and complex knot selection schemes. We regulate the flexibility of each component through a separate penalty parameter that is optimally chosen based on cross-validation or an information criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.