Abstract

The measurement-induced phase transition (MIPT) occurs when the system is evolving under unitary evolution together with local measurements followed by post-selection. We propose a generalized version of the Lindblad master equation as a continuous equation, to describe the dynamics of the second Rényi entropy in the MIPT. This generalized Lindblad equation explicitly takes into account the post-selection in the MIPT, which is realized as the Einstein-Podolsky-Rosen (EPR) state projection in the equation. Also, this generalized Lindblad equation preserves the Hermitian, unit trace, and positive definiteness of the density matrix. We further use the hard-core Bose-Hubbard model as a concrete example to numerically confirm that our generalized Lindblad equation is applicable to describing the MIPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.