Abstract

This paper introduces innovative detection schemes for forward scatter radar (FSR) based on the generalized likelihood ratio test (GLRT) for both cases, where a fixed threshold can be used and where a fully adaptive CFAR scheme is desired. The detection performance of the newly proposed detectors is characterized analytically and compared to the performance of the standard detection scheme. This shows that the new detectors always outperform the standard FSR detector. In most cases the improvement has an upper bound of 3 dB, but there are specific cases where the standard FSR detector shows significant losses, while the new GLRT schemes suffer a much smaller degradation. Finally, simplified equivalent SNR expressions are introduced that relate the GLRT detection performance to the main parameters describing the FSR observation geometry and the target size and motion. These expressions are shown to be useful for the design of effective FSR geometries that guarantee desired detection performance for specific targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call