Abstract

Summary Summary. The regression literature contains hundreds of studies on serially correlated disturbances. Most of these studies assume that the structure of the error covariance matrix Ω is known or can be estimated consistently from data. Surprisingly, few studies investigate the properties of estimated generalized least squares (GLS) procedures when the structure of Ω is incorrectly identified and the parameters are inefficiently estimated. We compare the finite sample efficiencies of ordinary least squares (OLS), GLS and incorrect GLS (IGLS) estimators. We also prove new theorems establishing theoretical efficiency bounds for IGLS relative to GLS and OLS. Results from an exhaustive simulation study are used to evaluate the finite sample performance and to demonstrate the robustness of IGLS estimates vis-à-vis OLS and GLS estimates constructed for models with known and estimated (but correctly identified) Ω. Some of our conclusions for finite samples differ from established asymptotic results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.