Abstract

Artificial gauge fields the control over the dynamics of uncharged particles by engineering the potential landscape such that the particles behave as if effective external fields are acting on them. Recent years have witnessed a growing interest in artificial gauge fields generated either by the geometry or by time-dependent modulation, as they have been enablers of topological phenomena and synthetic dimensions in many physical settings, e.g., photonics, cold atoms, and acoustic waves. Here, we formulate and experimentally demonstrate the generalized laws of refraction and reflection at an interface between two regions with different artificial gauge fields. We use the symmetries in the system to obtain the generalized Snell law for such a gauge interface and solve for reflection and transmission. We identify total internal reflection (TIR) and complete transmission and demonstrate the concept in experiments. In addition, we calculate the artificial magnetic flux at the interface of two regions with different artificial gauge fields and present a method to concatenate several gauge interfaces. As an example, we propose a scheme to make a gauge imaging system—a device that can reconstruct (image) the shape of an arbitrary wavepacket launched from a certain position to a predesigned location.

Highlights

  • Snell’s law and the Fresnel coefficients are the cornerstones of describing the evolution of electromagnetic waves at an interface between two different media

  • In the presence of a different Gauge fields (GFs) on either side of the interface, the trajectories of waves crossing from one side to the other are governed by the symmetries in the system, which are expected to result in an effective Snell’s law, whereas the reflection and transmission coefficients arise from the specific boundary

  • We show how the transverse momenta of the reflected and transmitted waves change according to the interfacial change in the gauge field, and demonstrate total internal reflection (TIR) and complete transmission

Read more

Summary

Introduction

Snell’s law and the Fresnel coefficients are the cornerstones of describing the evolution of electromagnetic waves at an interface between two different media. We theoretically and experimentally demonstrate the effective Snell law governing the reflection and transmission of waves at an interface between regions of the same photonic medium, differing only in the artificial gauge fields introduced on either side.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.