Abstract

We present a new method to approximate the Mori-Zwanzig (MZ) memory integral in generalized Langevin equations (GLEs) describing the evolution of smooth observables in high-dimensional nonlinear systems with local interactions. Building upon the Faber operator series we recently developed for the orthogonal dynamics propagator, and an exact combinatorial algorithm that allows us to compute memory kernels from first principles, we demonstrate that the proposed method is effective in computing auto-correlation functions, intermediate scattering functions and other important statistical properties of the observable. We also develop a new stochastic process representation of the MZ fluctuation term for systems in statistical equilibrium. Numerical applications are presented for the Fermi-Pasta-Ulam model, and for random wave propagation in homogeneous media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.