Abstract
The classical Kirchhoff’s method provides an efficient way of calculating the hydrodynamical loads (forces and moments) acting on a rigid body moving with six-degrees of freedom in an otherwise quiescent ideal fluid in terms of the body’s added-mass tensor. In this paper we provide a versatile extension of such a formulation to account for both the presence of an imposed ambient non-uniform flow field and the effect of surface deformation of a non-rigid body. The flow inhomogeneity is assumed to be weak when compared against the size of the body. The corresponding expressions for the force and moment are given in a moving body-fixed coordinate system and are obtained using the Lagally theorem. The newly derived system of nonlinear differential equations of motion is shown to possess a first integral. This can be interpreted as an energy-type conservation law and is a consequence of an anti-symmetry property of the coefficient matrix reported here for the first time. A few applications of the proposed formulation are presented including comparison with some existing limiting cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.