Abstract

A kinetic model, incorporating dehydrogenation of tetralin, for the liquefaction of coals has been developed and tested with data from a variety of low- and medium-rank coals. The model postulates that coal essentially consists of three lumps. Of these, one dissociates almost instantaneously, the second is characterized by slow internal hydrogen shuttling, and only the third lump requires external hydrogen. The reactivity of each lump does not vary between coals; however, different coals are found to contain different fractions of each lump. The rate of reaction of coal is about 3 orders of magnitude faster than the tetralin dehydrogenation reaction. This study clearly shows that it is not only the solvent's capacity to donate hydrogen but also the rate at which hydrogen is donated that is important in coal liquefaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.