Abstract

A nonlinear filter generator is a basic keystream generator for stream cipher applications consisting of a single linear feedback shift register whose output is filtered by a nonlinear combining function. A binary nonlinear filter generator is viewed as a finite input memory automaton with one binary input and one binary output. The generalized inversion attack on a binary nonlinear filter generator is developed and analyzed by the theory of critical branching processes. Its objective is to recover the unknown input sequence from a given segment of the output sequence, provided that the filter function is known. Unlike the inversion attack, which requires that the filter function be linear in the first or the last input variable, this attack can be applied for any filter function. Both theory and systematic experiments show that its time complexity remains dose to 2/sup M/, which is the time complexity of the inversion attack, where M denotes the input memory size in bits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.