Abstract

We propose a linear precoding scheme for a single user multiple-input-multiple-output orthogonal frequency division multiplexing (OFDM) system to minimize peak to average power ratio (PAPR) by using redundant spatial resources at the transmitter through a singular-value-decomposition-based generalized inverse. The proposed precoder based on the generalized inverse is composed of two parts. One is for minimizing PAPR, and the other is for obtaining the multiplexing gain. Moreover, the proposed precoder contains a scalar parameter α that quantifies the received signal-to-noise power ratio (SNR) loss at the cost of PAPR reduction. Even in cases of small SNR loss, the proposed scheme dramatically reduces PAPR. Furthermore, simulation results show that we can obtain a PAPR close to 1 by using dozens of transmission antennas with small SNR loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.