Abstract

In [A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal. 10 (2000) 1507–1526], A. Koldobsky asked whether two types of generalizations of the notion of an intersection body are in fact equivalent. The structures of these two types of generalized intersection bodies have been studied by the author in [E. Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2) (2006) 530–567], providing substantial evidence for a positive answer to this question. The purpose of this note is to construct a counter-example, which provides a surprising negative answer to this question in a strong sense. This implies the existence of non-trivial non-negative functions in the range of the spherical Radon transform, and the existence of non-trivial spaces which embed in L p for certain negative values of p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.