Abstract

In a recent paper A. Schuster and K. Seip [SchS] have characterized interpolating sequences for Bergman spaces in terms of extremal functions (or canonical divisors). As these are natural analogues in Bergman spaces of Blaschke products, this yields a Carleson type condition for interpolation. We intend to generalize this idea to generalized free interpolation in weighted Bergman spaces Bp, α as was done by V. Vasyunin [Va1] and N. Nikolski [Ni1] (cf.also [Ha2]) in the case of Hardy spaces. In particular we get a strong necessary condition for free interpolation in Bp, α on zero–sets of Bp, α–functions that in the special case of finite unions of Bp, α–interpolating sequences turns out to be also sufficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.