Abstract

A generalized infinite dimensional oscillatory integral with a polynomially growing phase function is defined and explicitly computed in terms of an absolutely convergent Gaussian integral. The results are applied to the Feynman path integral representation for the solution of the Schrödinger equation with an anharmonic oscillator potential. To cite this article: S. Albeverio, S. Mazzucchi, C. R. Acad. Sci. Paris, Ser. I 338 (2004).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.