Abstract
In this investigation we propose several generalized first-order integral-boundary-layer (IBL) models to simulate the two-dimensional gravity-driven flow of a thin fluid layer down an incline. Various cases are considered and include: isothermal and non-isothermal flows, flat and wavy bottoms, porous and non-porous surfaces, constant and variable fluid properties, and Newtonian and non-Newtonian fluids. A numerical solution procedure is also proposed to solve the various model equations. Presented here are some results from our numerical experiments. To validate the generalized IBL models comparisons were made with existing results and the agreement was found to be reasonable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.