Abstract
We study in this paper a generalization of the notion of a discrete hypergroup with particular emphasis on the relation with systems of orthogonal polynomials. The concept of a locally compact hypergroup was introduced by Dunkl [8], Jewett [12] and Spector [25]. It generalizes convolution algebras of measures associated to groups as well as linearization formulae of classical families of orthogonal polynomials, and many results of harmonic analysis on locally compact abelian groups can be carried over to the case of commutative hypergroups; see Heyer [11], Litvinov [17], Ross [22], and references cited therein. Orthogonal polynomials have been studied in terms of hypergroups by Lasser [15] and Voit [31], see also the works of Connett and Schwartz [6] and Schwartz [23] where a similar spirit is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.