Abstract

We consider the class of approximation spaces generated by admissible sets, in particular by hereditarily finite superstructures over structures. Generalized computability on approximation spaces is conceived of as effective definability in dynamic logic. By analogy with the notion of a structure Σ-definable in an admissible set, we introduce the notion of a structure effectively definable on an approximation space. In much the same way as the Σ-reducibility relation, we can naturally define a reducibility relation on structures generating appropriate semilattices of degrees of structures (of arbitrary cardinality), as well as a jump operation. It is stated that there is a natural embedding of the semilattice of hyperdegrees of sets of natural numbers in the semilattices mentioned, which preserves the hyperjump operation. A syntactic description of structures having hyperdegree is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.