Abstract

The generalized hybrid derivative coupling model has been applied to explore various ground state properties of different nuclei. In this work we have confined our calculation only to the model characterized by the hybridization parameter α = 1/4 which gives better results than the other models of the same class, as we have seen earlier, for nuclear matter calculations. The binding energy, single-particle energy spectra, density and charge radii of different doubly closed nuclei like 16O, 40Ca, 48Ca, 90Zr, 132Sn, 208Pb have been studied. The success of this model, in describing the doubly closed nuclei, motivates us to extend this calculation further in the case of open shell nuclei after incorporating the pairing interaction and using a BCS transformation. We have calculated the binding energy for such nuclei. We have also studied the isotopic shift for different Pb isotopes with respect to 208Pb. We have compared our results with the other standard theoretical results as well as with the experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.