Abstract

Numerous exciting optical effects in all-dielectric high-refractive-index structures are associated with so-called toroidal electrodynamics. Among these effects are anapoles, nonradiated states caused by interference phenomena, e.g. between electric dipole and toroidal dipole modes. For a spherical particle it is possible to reach simultaneous destructive interference for electric, magnetic, and corresponding toroidal dipole modes (so-called hybrid anapole mode), by varying the refractive index and/or particle size. However, there are no sufficient degrees of freedom within spherical geometry to extend the hybrid anapole mode effect to higher multipoles. Due to the optical theorem, it is also impossible to create the ideal anapole with destructive interference for all multipoles under plane wave illumination. In principle, it is possible to suppress radiation losses for the finite number of multipoles only by constructing the nanoantenna with complex geometry. Our approach of the hybrid anapole state excitation, we demonstrate in ellipsoidal all-dielectric particle providing cancellation of both electric and magnetic scattering up to quadrupole modes. This effect is achieved due to the optimised geometry of the ellipsoidal particle. Moreover, we provide classification of novel anapoles arising due to interference between moments and their mean- square radii (MSR) of electric, magnetic and toroidal family and introduce generalized anapoles for high order interaction between moments. Our concept is useful for the design of light controlling devices, reflectionless metasurfaces, high Q-factor opened resonators and nonscattering particle development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.