Abstract

In this paper we study the maximum number of limit cycles that can bifurcate from a focus singular point p 0 of an analytic, autonomous differential system in the real plane under an analytic perturbation. We consider p 0 being a focus singular point of the following three types: non-degenerate, degenerate without characteristic directions and nilpotent. In a neighborhood of p 0 the differential system can always be brought, by means of a change to (generalized) polar coordinates (r, θ), to an equation over a cylinder in which the singular point p 0 corresponds to a limit cycle γ 0. This equation over the cylinder always has an inverse integrating factor which is smooth and non-flat in r in a neighborhood of γ 0. We define the notion of vanishing multiplicity of the inverse integrating factor over γ 0. This vanishing multiplicity determines the maximum number of limit cycles that bifurcate from the singular point p 0 in the non-degenerate case and a lower bound for the cyclicity otherwise. Moreover, we prove the existence of an inverse integrating factor in a neighborhood of many types of singular points, namely for the three types of focus considered in the previous paragraph and for any isolated singular point with at least one non-zero eigenvalue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.