Abstract
We investigate a generalized Hopf bifurcation emerged from a corner located at the origin which is the intersection of n discontinuity boundaries in planar piecewise smooth dynamical systems with the Jacobian matrix of each smooth subsystem having either two different nonzero real eigenvalues or a pair of complex conjugate eigenvalues. We obtain a novel result that the generalized Hopf bifurcation can occur even when the Jacobian matrix of each smooth subsystem has two different nonzero real eigenvalues. According to the eigenvalues of the Jacobian matrices and the number of smooth subsystems, we provide a general method and prove some generalized Hopf bifurcation theorems by studying the associated Poincaré map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.