Abstract

For part I see ibid. vol.8, no. 1 (2000). This paper presents an application of the generalized hidden Markov models to handwritten word recognition. The system represents a word image as an ordered list of observation vectors by encoding features computed from each column in the given word image. Word models are formed by concatenating the state chains of the constituent character hidden Markov models. The novel work presented includes the preprocessing, feature extraction, and the application of the generalized hidden Markov models to handwritten word recognition. Methods for training the classical and generalized (fuzzy) models are described. Experiments were performed on a standard data set of handwritten word images obtained from the US Post Office mail stream, which contains real-word samples of different styles and qualities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.