Abstract

AbstractClifford analysis is a higher‐dimensional function theory offering a refinement of classical harmonic analysis, which has proven to be an appropriate framework for developing higher‐dimensional continuous wavelet transforms, the construction of the wavelets being based on generalizations to a higher dimension of classical orthogonal polynomials on the real line. More recently, Hermitean Clifford analysis has emerged as a new branch of Clifford analysis, offering yet a refinement of the standard Euclidean case; it focusses on so‐called Hermitean monogenic functions, i.e. simultaneous null solutions of two Hermitean Dirac operators. In this Hermitean setting, Clifford–Hermite polynomials and their associated families of wavelet kernels have been constructed starting from a Rodrigues formula involving both Hermitean Dirac operators mentioned. Unfortunately, the property of the so‐called vanishing moments of the corresponding mother wavelets, ensuring that polynomial behaviour in the analyzed signal is filtered out, is only partially satisfied and has to be interpreted with care, the underlying mathematical reason being the fact that the Hermitean Clifford–Hermite polynomials show a too restrictive structure. In this paper, we will remediate this drawback by considering generalized Hermitean Clifford–Hermite polynomials, involving in their definition homogeneous Hermitean monogenic polynomials. The ultimate goal being the construction of new continuous wavelet transforms by means of these polynomials, we first deeply investigate their properties, amongst which are their connection with the traditional Laguerre polynomials, their structure and recurrence relations. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.