Abstract

Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given rational function as a sum of a function with simple poles and the derivative of another rational function. We extend Hermite reduction to arbitrary linear differential operators instead of the pure derivative, and develop efficient algorithms for this reduction. We then apply the generalized Hermite reduction to the computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative telescoping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.