Abstract

We study the Bethe ansatz/ordinary differential equation (BA/ODE) correspondence for Bethe ansatz equations that belong to a certain class of coupled, nonlinear, algebraic equations. Through this approach we numerically obtain the generalized Heine–Stieltjes and Van Vleck polynomials in the degenerate, two-level limit for four cases of integrable Bardeen–Cooper–Schrieffer (BCS) pairing models. These are the s-wave pairing model, the p + ip-wave pairing model, the p + ip pairing model coupled to a bosonic molecular pair degree of freedom, and a newly introduced extended d + id-wave pairing model with additional interactions. The zeros of the generalized Heine–Stieltjes polynomials provide solutions of the corresponding Bethe ansatz equations. We compare the roots of the ground states with curves obtained from the solution of a singular integral equation approximation, which allows for a characterization of ground-state phases in these systems. Our techniques also permit the computation of the roots of the excited states. These results illustrate how the BA/ODE correspondence can be used to provide new numerical methods to study a variety of integrable systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.