Abstract

Standard SU(2) Heavy Baryon Chiral Perturbation Theory is extended in order to include the case of small or even vanishing quark condensate. The effective lagrangian is given to ${\cal O}(p^2)$ in its most general form and to ${\cal O}(p^3)$ in the scalar sector. A method is developed to efficiently construct the relativistic baryonic effective lagrangian for chiral SU(2) to all orders in the chiral expansion. As a first application, mass- and wave-function renormalization as well as the scalar form factor of the nucleon is calculated to ${\cal O}(p^3)$. The result is compared to a dispersive analysis of the nucleon scalar form factor adopted to the case of a small quark condensate. In this latter analysis, the shift of the scalar form factor between the Cheng-Dashen point and zero momentum transfer is found to be enhanced over the result assuming strong quark condensation by up to a factor of two, with substantial deviations starting to be visible for $r=m_s/\hat{m}\lesssim 12$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.