Abstract

ABSTRACTIn this paper we will introduce a sequence of complex numbers that are called the Jacobi numbers. This sequence generalizes in a natural way several sequences that are known in the literature, such as Catalan numbers, central binomial numbers, generalized catalan numbers, the coefficient of the Hilbert matrix and others. Subsequently, using a study of the polynomial of Jacobi, we give an evaluation of the Hankel determinants that associated with the sequence of Jacobi numbers. Finally, by finding a relationship between the Jacobi numbers and generalized harmonic numbers, we determine the evaluation of the Hankel determinants that are associated with generalized harmonic numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.