Abstract
Good lattice point (GLP) sets are frequently used in quasi-Monte Carlo method and computer experiments. However, the space-filling property of GLP sets needs to be improved especially when the number of factors is large. This paper shows that the generalized GLP (GGLP) sets, constructed simply and fast by the linear level permutation of the GLP sets, have better space-filling property than the GLP sets and the orthogonal Latin hypercube designs (OLHD) in the sense of maximin distance criterion and uniformity criterion, especially for high dimensional cases. Unlike the OLHD, the number of runs of the GGLP sets can be chosen as any integer. It is also shown that the GLP sets are better than Latin hypercube designs as the starting design for linear and nonlinear level permutation. The GGLP sets are recommended for the designs with large number of factors and/or large number of runs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.