Abstract

We analyze the probability distribution function (PDF) of work done on a Luttinger liquid for an arbitrary finite duration interaction quench and show that it can be described in terms a generalized Gibbs ensemble. We construct the corresponding density matrix with explicit intermode correlations, and determine the duration and interaction dependence of the probability of an adiabatic transition and the PDF of non-adiabatic processes. In the thermodynamic limit, the PDF of work exhibits a non-Gaussian maximum around the excess heat, carrying almost all spectral weight. In contrast, in the small system limit most spectral weight is carried by a delta peak at the energy of the adiabatic process, and an oscillating PDF with dips at energies commensurate to the quench duration and with an exponential envelope develops. Relevance to cold atom experiments is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call