Abstract

Generalized G-convergence for a quasilinear elliptic differential equation is defined and studied. The equation describes heat conduction in the cores of large electric transformers. The coefficients of the equation depend on temperature and the corresponding differential operator is neither potential nor monotone. A theory which generalizes the classical G-convergence is proposed. The theory is applied to the homogenization of the quasilinear elliptic differential equation with periodic coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.