Abstract

This paper presents the development of generalized fuzzy k-means algorithms and their application in image compression based on vector quantization. The development of generalized fuzzy k-means algorithms is based on the search for partitions of the feature vector space other than those generated by existing fuzzy k-means algorithms. These alternative partitions can be obtained by relaxing one of the conditions imposed on the membership functions. The clustering problem is formulated as a constrained minimization problem, whose solution depends on the selection of a constrain function that satisfies certain conditions. The solution of this minimization problem results in a broad family of generalized fuzzy k-means algorithms, which include the existing fuzzy k-means algorithms as a special case. Moreover, the proposed formulation results in the minimum fuzzy k-means algorithms, which are computationally less demanding than the existing fuzzy k-means algorithms. A broad family of admissible constrain functions result in an extended family of fuzzy k-means algorithms, which at the limit provide the fuzzy k-means and minimum fuzzy k-means algorithms. The resulting algorithms are used in image compression based on vector quantization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call