Abstract

In this paper, we generalize the F\orster-Dexter theory to treat photoinduced electronic energy transfer for a system in dense media and for an isolated system (i.e., a system in the collision-free condition). Instead of expressing the rate of energy transfer in terms of spectral overlap, we obtain the expression of the energy-transfer rate constant by evaluating a Fourier integral using the saddle-point method. In this way, the energy-gap dependence and the effect of temperature and the isotope effect on the energy transfer can be easily studied. The effect of bridge groups connecting between donor and acceptor on the energy transfer is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call