Abstract

Abstract We survey the ‘generalized fractional Poisson process’ (GFPP). The GFPP is a renewal process generalizing Laskin’s fractional Poisson counting process and was first introduced by Cahoy and Polito. The GFPP contains two index parameters with admissible ranges 0 < β ≤ 1, α > 0 and a parameter characterizing the time scale. The GFPP involves Prabhakar generalized Mittag-Leffler functions and contains for special choices of the parameters the Laskin fractional Poisson process, the Erlang process and the standard Poisson process. We demonstrate this by means of explicit formulas. We develop the Montroll-Weiss continuous-time random walk (CTRW) for the GFPP on undirected networks which has Prabhakar distributed waiting times between the jumps of the walker. For this walk, we derive a generalized fractional Kolmogorov-Feller equation which involves Prabhakar generalized fractional operators governing the stochastic motions on the network. We analyze in d dimensions the ‘well-scaled’ diffusion limit and obtain a fractional diffusion equation which is of the same type as for a walk with Mittag-Leffler distributed waiting times. The GFPP has the potential to capture various aspects in the dynamics of certain complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call