Abstract

The fluctuation theorem has a very special place in the study of nonequilibrium dynamics of physical systems. The form in which it is used most extensively is the Gallavoti-Cohen fluctuation theorem which is in terms of the distribution of the work p(W)/p(-W)=exp(αW). We derive the general form of the fluctuation theorems for an arbitrary multidimensional Gaussian Markov process. Interestingly, the parameter α is by no means universal, hitherto taken for granted in the case of linear Gaussian processes. As a matter of fact, conditions under which α does become a universal parameter 1/KT are found to be rather restrictive. As an application we consider fluctuation theorems for classical cyclotron motion of an electron in a parabolic potential. The motion of the electron is described by four coupled Langevin equations and thus is nontrivial. The generalized theorems are equally valid for nonequilibrium steady states and could be especially important in the presence of anisotropic diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.