Abstract

A generalized finite-volume theory is proposed for two-dimensional elasticity problems on rectangular domains. The generalization is based on a higher-order displacement field representation within individual subvolumes of a discretized analysis domain, in contrast with the second-order expansion employed in our standard theory. The higher-order displacement field is expressed in terms of elasticity-based surface-averaged kinematic variables, which are subsequently related to corresponding static variables through a local stiffness matrix derived in closed form. The novel manner of defining the surface-averaged kinematic and static variables is a key feature of the generalized finite-volume theory, which provides opportunities for further exploration. Satisfaction of subvolume equilibrium equations in an integral sense, a defining feature of finite-volume theories, provides the required additional equations for the local stiffness matrix construction. The theory is constructed in a manner which enables systematic specialization through reductions to lower-order versions. Part I presents the theoretical framework. Comparison of predictions by the generalized theory with its predecessor, analytical and finite-element results in Part II illustrates substantial improvement in the satisfaction of interfacial continuity conditions at adjacent subvolume faces, producing smoother stress distributions and good interfacial conformability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call