Abstract

Fractional diffusion equations have been widely used to accurately describe anomalous solute transport in complex media. This paper proposes a local meshless method named the generalized finite difference method (GFDM), to solve a class of multidimensional space fractional diffusion equations (SFDEs) in a finite domain. In the GFDM, the spatial derivative terms are expressed as linear combinations of neighboring-node values with different weighting coefficients using the moving least-square approximation. An explicit formula for the SFDE is then obtained. The numerical solution is achieved by solving a sparse linear system. Four numerical examples are provided to verify the effectiveness of the proposed method. Numerical analysis indicates that the relative errors of prediction results are stable and less than 1% (0.001–1%). The method can also be applied for irregular grids with acceptable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.