Abstract

This paper addresses the filtering problem for the one-sided Lipschitz nonlinear systems under measurement delays and disturbances using a generalized observer. A generalized architecture for filtering of the one-sided Lipschitz nonlinear systems with output delays is explored, which exhibits diverging manifolds, namely, the conventional static-gain filter and the dynamical filter, and can be employed to render robust stability of the filtering error dynamics. A matrix inequality based framework is obtained by employing a Lyapunov−Krasovskii (LK) functional, whose derivative is exploited through Jensen's inequality, one-sided Lipschitz condition, quadratic inner-boundedness inequality and range of the measurement delay, resulting into L2 stability for the filtering error system. Generalized filter design for the Lipschitz nonlinear systems with delayed outputs and specific results for the delay-dependent and delay-rate-independent filtering schemes for the one-sided Lipschitz nonlinear systems are deduced from the proposed approach. Convex optimization techniques are employed to achieve a solution for the nonlinear constraints through linear matrix inequalities by employing cone complementary linearization approach. Illustrative numerical examples to demonstrate the effectiveness of proposed method are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.