Abstract

The finite-difference time-domain (FDTD) method of solving the full-wave Maxwell's equations has been recently extended to provide accurate and numerically stable operation for time steps exceeding the Courant limit. The elimination of an upper bound on the size of the time step was achieved using an alternating-implicit direction (ADI) time-stepping scheme. This greatly increases the computational efficiency of the FDTD method for classes of problems where the cell size of the three-dimensional space lattice is constrained to be much smaller than the shortest wavelength in the source spectrum. One such class of problems is the analysis of high-speed VLSI interconnects where full-wave methods are often needed for the accurate analysis of parasitic electromagnetic wave phenomena. In this paper, we present an enhanced FDTD-ADI formulation which permits the modeling of realistic lossy materials such as semiconductor substrates and metal conductors as well as artificial lossy materials needed for perfectly matched layer (PML) absorbing boundary conditions. Simulations using our generalized FDTD-ADI formulation are presented to demonstrate the accuracy and extent to which the computational burden is reduced by the ADI scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.