Abstract
The evolutes of regular curves in the Euclidean plane are given by the caustics of regular curves. In this paper, we define the generalized evolutes of planar curves which are spatial curves, and the projection of generalized evolutes along a fixed direction are the evolutes. We also prove that the generalized evolutes are the locus of centers of slant circles of the curvature of planar curves. Moreover, we define the generalized parallels of planar curves and show that the singular points of generalized parallels sweep out the generalized evolute. In general, we cannot define the generalized evolutes at the singular points of planar curves, but we can define the generalized evolutes of fronts by using moving frames along fronts and curvatures of the Legendre immersion. Then we study the behaviors of generalized evolutes at the singular points of fronts. Finally, we give some examples to show the generalized evolutes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.