Abstract

This paper studies compilation techniques for algebraic effect handlers. In particular, we present a sequence of refinements of algebraic effects, going via multi-prompt delimited control, _generalized evidence passing_, yield bubbling, and finally a monadic translation into plain lambda calculus which can be compiled efficiently to many target platforms. Along the way we explore various interesting points in the design space. We provide two implementations of our techniques, one as a library in Haskell, and one as a C backend for the Koka programming language. We show that our techniques are effective, by comparing against three other best-in-class implementations of effect handlers: multi-core OCaml, the _Ev.Eff_ Haskell library, and the libhandler C library. We hope this work can serve as a basis for future designs and implementations of algebraic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.