Abstract

Nonlinear first order partial functional differential systems are considered in the paper. Classical solutions of the local Cauchy problem on the Haar pyramid are approximated by solutions of suitable quasilinear systems of difference functional equations. The proposed numerical methods are difference schemes of the Euler type. A complete convergence analysis is given and it is shown by examples that the new methods are considerable better than the classical methods. It is shown that the Lax scheme is superfluous for the numerical approximations of classical solutions to nonlinear functional differential problems. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.