Abstract
The generalized cumulative residual entropy is a recently defined dispersion measure. In this paper, we obtain some further results for such a measure, in relation to the generalized cumulative residual entropy and the variance of random lifetimes. We show that it has an intimate connection with the non-homogeneous Poisson process. We also get new expressions, bounds and stochastic comparisons involving such measures. Moreover, the dynamic version of the mentioned notions is studied through the residual lifetimes and suitable aging notions. In this framework we achieve some findings of interest in reliability theory, such as a characterization for the exponential distribution, various results on k-out-of-n systems, and a connection to the excess wealth order. We also obtain similar results for the generalized cumulative entropy, which is a dual measure to the generalized cumulative residual entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.