Abstract

Nonlinear dynamical systems exhibiting complex structure in their limit sets, such as chaotic and closed orbits, do not admit energy functions. The theory of generalized energy functions, which may assume positive derivative in some bounded sets, appears as an alternative to study the asymptotic behavior of solutions of these systems. In this article, a generalized energy function and a complete characterization of the stability boundary and stability region are developed for a class of third-order dynamical systems. This class of systems appears in electrical power system models and has a class of quasi-gradient systems and second-order systems as particular cases. These systems may admit complex structure in their limit sets and do not admit an energy function that is general for the class. Numerical examples illustrate how generalized energy functions provide estimates of stability regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.